Home Current issue Instructions
About us Archives Login 
Editorial board Search articles Contact us
Home Print this page Email this page Users Online: 863
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 3  |  Page : 51-55

Analysis of pH and cytotoxic activity of locally produced radiopaque white Portland cement


1 School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2 School of Dental Sciences, Universiti Sains Malaysia; Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
3 Department of Prosthetic Dentistry, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
4 Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence Address:
Dr. Hany Mohamed Aly Ahmed
Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ejgd.ejgd_90_18

Rights and Permissions

Background: Portland cement (PC)-based formulations show continuous developments. Purpose: This study examined the pH and cytotoxic activity of a locally produced Malaysian white PC (MAWPC) mixed with different radiopacifying agents (barium sulfate [BS], niobium oxide [NO], and bismuth oxide [BO]) on human periodontal ligament fibroblasts (HPLFs). Materials and Methods: 0.8 g of MAWPC was mixed with 0.2 g of each radiopacifying agent and sterile distilled water. Five tablets of each group were prepared. After setting, the samples were immersed in 10-ml sterile distilled water and stored at 37°C, and the pH was measured at intervals of 0, 1, 3, 7, and 14 days using a calibrated digital pH meter. One-way ANOVA was used for data analysis (P = 0.05). For cytotoxic activity, the material extracts were prepared at three serial concentrations (25, 12.5, and 6.25 mg/ml), and 200 ml of each concentration was added into each well seeded with cultured HPLFs. The plates were then incubated for 48 h. The cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the data were analyzed using Kruskal–Wallis test (P = 0.05) Results: The pH values of all groups were significantly higher compared to the control group (P < 0.001). With the exception of day 0, the pH values of all groups at all day intervals ranged from 9.9 to 10.9, and some significant differences were detected. Although the addition of radiopacifying agents decreased the cell viability values of MAWPC extracts (P < 0.05), all groups showed favorable cytotoxicity profile. MAWPC/BO combination showed higher cell viability values compared to MAWPC/NO and MAWPC/BS. Conclusions: The addition of radiopacifying agents to MAWPC maintained its high pH and favored the viability of HPLFs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed162    
    Printed7    
    Emailed0    
    PDF Downloaded46    
    Comments [Add]    

Recommend this journal